INTRODUCTION TO COMPLEX FAULT PROTECTION SOFTWARE TESTING

Sue A. Johnson
Jet Propulsion Laboratory, California Institute of Technology
M.S. 198-219, 4800 Oak Grove Drive
Pasadena, California 91109-8099

ABSTRACT

This paper describes how fault protection software verification
testing has been addressed for the Attitude and Articulation
Control Subsystem on the Saturn-bound Cassini spacecraft. The
verification included definition of failure injection capabilities to the
test beds. The Cassini Fault Protection test program evolved
using several test phases to complete separate goals which taken
together encompassed all of the flight software complexities. This
phased testing approach developed high confidence in the
robustness and correctness of the FP flight software. Over 500
prelaunch tests of the flight software in a realistically modeled
environment were used to ensure the design is robust to single
faults. In the process we found that many double fault scenarios
are handled by the Cassini Attitude and Articulation Control
Subsystem fault protection software design.

1. SCOPE OF CASSINI AACS FAULT PROTECTION
SOFTWARE VERIFICATION

The Saturn-bound Cassini spacecraft has the most advanced
Attitude and Articulation Control Subsystem (AACS) fault
protection design ever attempted on any interplanetary spacecraft.
The system that the AACS fault protection oversees is dual
redundant. Within the AACS are two 1750A microprocessor based
flight computers, two MIL-STD-1553B type communications buses,
and sixteen remote terminals connected to eight different types of
hardware (e.g. sun sensors). The flight computers, buses, and
remote terminals are all cross-strapped for full redundancy.

The Cassini AACS flight software is complex as well. The object
oriented flight software, written in Ada, has nineteen operational
modes. The number of elements in the AACS fault protection is
overwhelming: 312 error monitors, 310 activation rules, and 214
response scripts. The AACS fault protection design document is
four inches thick. There are three other subsystems to which
AACS has interfaces: Command and Data Subsystem (CDS),
Power, and Propulsion.

Fault Protection verification progress was tracked by use of Excel
spreadsheets and weekly test result reviews. The reviews were
attended by the members of the fault protection test team, the fault
protection designers, a software test bed representative, and a
flight software representative. At these weekly meetings the
apparently successful tests would be passed along for an
independent verification. All test problems were assigned to the
likely culprit, test bed error or flight software error. Flight software

problems were described in detail as a Flight Software Change
(FSC) request. Al test results obtained using the modified flight
software were reported to the weekly test review group to close the
loop.

The AACS fault protection weekly review meetings lasted about
1.5 hours and could summarize about 25 tests per meeting. The
fault protection verification team included 2.5 full time equivalent
people for testing. The fault protection design team had 2.0 full
time equivalents spread over 4 to 5 people. The flight software
representative spent about 40% of her week on fault protection
related issues.

The fault protection verification program had only one year to
prove the AACS fault protection design. Testing began in
September, 1996 with the goal of verifying all response scripts by
mid-December. This initial goal would support later system level
testing on the partially assembled spacecraft beginning in January,
1997. Other drivers of the AACS fault protection verification
schedule were the May, 1997 shipping date to Kennedy Space
Center, and the scheduled delivery of the launch AACS flight
software in June 1997.

2. FAULT PROTECTION TEST BEDS

Cassini's AACS has two useful test beds for fault protection test
verification. The highest fidelity test bed is hardware based. In
this laboratory the flight computers run the flight software and
interface with flight spares, protoflight boards or engineering
models. Sun and stars are always simulated. The spacecraft
dynamics are modeled. The second fault protection verification
test bed is based on a 1750A emulation on Sun workstations. This
software based test bed uses the same dynamics models, and star
emulation. All the AACS hardware have detailed representative
models in the software test bed.

In addition to faithfully representing the AACS, these test beds
provide fault injection capabilities. Potential hardware failures
were captured in Failure Modes and Effects Analysis (FMEA)
reports. A significant effort was expended in defining failure
descriptions and associated symptoms from the FMEA. The
output was the wish list of failure injection capabilities for the two
test beds, see Table 1. Not all failure injections could be
implemented in both labs. But most could be implemented in at
least one of the labs.

Table 1. Comparisons of Failure Injection Wish List to
Delivered Capabilities

: : # of Wish | Software Test | Hardware Test
Failure Location List failyres Bed Bed Capabilities
Sun Sensors 17 16 4
Inertial Reference Units 21 21 7
Solid State Power 14 13 11
Accelerometer 17 17 3
Engine Gimbal Assembly 27 26 5
Heaction Wheels 14 14 3
[Stellar Reference Units 19 14 3
Bi-Prop System 79 79 25
Mono-Prop System 41 41 19
Attitude Control 15 15 3
XBA & CDS Messages 91 63 28
Remote Terminal & Bus 52 51 5
Star Identification 10 7 1
Attitude Estimation 8 8 1
Totals 425 385 118

There are strong advantages of testing in the hardware based test
bed. The system is more flight-like than the pure software
approach. The bus transactions have real timing. The interplay
between the two AACS flight computers is testable, including flight
computer reset recovery. The hardware test bed disadvantages
include: non-CDS synchronized clocks, real-time speed, less
visibility into software states, and longer set-up time. The support
software is easily swamped by quickly changing dynamic
situations. This test bed was also in high demand for other AACS
functional testing. Fault protection verification test time was very
constrained. The fault injection capability is limited to around 100
types of failures.

The software test bed bore the majority of the test load since
multiple test bed versions could be spawned concurrently by
multiple users, and since it could be run over night or weekends
unsupervised, It runs on the order of 4 to 10 times faster than real-
time. Flight software variables can be investigated without
interruption of the test. Four sets of mass properties are available
to simulate different phases of the Cassini mission. There are
nearly 400 types of fault injection capabilities in the software test
bed. The software test bed disadvantages include its unlimited
processing power, which can mask timing issues. Flight software
exceptions, a fatal error on the Sun Ada flight software versions,
would occur due to counter roll over. The software test bed could
not simulate a flight computer reset and recovery or a CDS to
AACS communications loss,

3. TEST PHASES

The Cassini AACS fault protection test program used several test
phases to complete separate goals which taken together
encompassed all of the flight software complexities. The goal of
the first phase was to test all response scripts, the code that
initiates remedial actions to a sensed failure, at least once. In
accomplishing this phase over half the error monitors were tested
as well. Phase one began in September 1996 and finished at the
end of December 1996. The goal of the second phase was to
verify AACS'’s fault protection interfaces with the System fault
protection. Cassini’s System fault protection provides responses
for spacecraft Safing, Command Loss, AACS Heartbeat Loss,

Over-temperature, Over-pressure and Under-voltage. Phase two
lasted three weeks. The goal of the third phase was to finish the
error monitor verification. Phase three stretched from January
1997 to April 1997. The fourth phase of testing exercised every
path for the 27 response scripts with more than two paths. Path
testing lasted from April 1997 through early June 1997. The fifth
phase worked on stress testing the fault protection software,
usually by injecting multiple faults. Fault protection verification
testing continued up through early October 1997. In addition to the
five phases of focused testing, fault protection requirements were
verified throughout the test program.

AACS fault protection verification regression testing was
performed in the two weeks prior to any AACS flight software
delivery to the spacecraft assembly team. Previous test cases that
could span the possible hardware and functional failures were
selected for regression testing. These tests produced only two
instances of new a problem.

4. TEST RESULTS

Throughout the AACS fault protection verification period, types of
test failures were tracked. Test failures were assigned to three
categories: test script problem, test bed problem, flight software
problem. The flight software problem category includes code
errors, software design errors, and even hardware design errors.
Table 2 below summarizes the test failures by category.

Table 2: Test Failure Distribution

Test Failure Source %
Script 15

Test Bed 25
F&qht Software 60

AACS fault protection verification tests for the software test bed
were written as Tcl, tool command language, scripts. [1] The script
controls the time explicitly. The time required to write a new test
script decreased from 40 minutes to 10 minutes for a moderately
complex test as our familiarity with the approach increased. Some
of the most common mistakes that would require a re-run were not
capturing appropriate data, using incompatible sun position and
ephemeris data, and forgetting an enabling command to set up the
AACS system to the expected conditions. A good example of an
enabling command problem is trying to switch from the branch A
thruster control system to branch B. The commands to do so
entail powering on the monopropellant driver on branch B, opening
the branch B latch valve, and warming the branch B catalyst bed
heaters. After these steps are accomplished, commands may be
sent to swap thrusters. Thereafter, the hardware on branch A may
be closed and powered off. The commonly missed step was .
opening the latch valve. There were many other similar command
sequence issues that must be addressed in designing the test
scripts.

In the hardware test bed the scripts were written as an overlay
sequence. Once the flight computer began running time was
advancing. The scripts usually issued a few commands, then
waited for telemetry confirmation before continuing. The test
errors in this laboratory include those listed above, but also
suffered from the state the hardware had been left in by the
previous user.

Test bed functional problems were similar in both the hardware
and software test beds. Sometimes the test bed would crash.
Sometimes the injected failure would do nothing. Sometimes a
hardware model would behave in a suspicious manner. An
example of a hardware model problem comes from the hardware
test bed. The two Cassini AACS inertial reference units each have
four hemispherically rotating gyros mounted with three orthogonal
and one slew axis. The AACS flight software selects three gyros
as prime and one gyro as a parity detector. When using a
foursome that included gyros from both inertial reference units, the
fault protection monitor, parity_violation, would be triggered. The
software test bed did not have the same problem. The problem
was traced to the model. The modeled behavior was that when
using a foursome with gyros from each inertial reference unit, the
gyro data is sampled from both inertial reference units at the same
time, but the internal time tags on the gyro data is either on a 120
msec or 130 msec delta. This produced a timing jitter on the gyro
data that caused the parity test to fail. Some of the problems
encountered could be fixed, others we had to work around.

The AACS flight software problems detected in the verification
program range from a simple code errors, timing errors, to bizarre
interaction between response scripts, to hardware design errors.
A major timing issue was found on the hardware test bed. A test
was run to trigger the repair_bus_controller response script, which
acts upon the flight computer. There is only one error monitor that
can activate this response, and there is only one path through the
response. Therefore, the test results were mystifying. Although
the error monitor was triggered, there was absolutely no response.
The theory from debugging this test suggested the AACS fault
protection software was running out of processing time which
prevented the response script from being activated. This issue
was invisible on the software test bed since processing time is
unconstrained. The amount of run time allocated to the fault
protection software in each 125 msec computation cycle was
doubled to solve this fundamental problem. Toward the summer of
1997, the problems discovered were ranked as either must-fix or
improvement. Only the must-fix items were changed in the launch
version of flight software. Of the improvement type FSCs there are
on the order of 60 scheduled for a post-launch flight software build.

The AACS fault protection verification test program was very
effective in finding flight software errors. There were five to six
times as many FSCs written from testing than from analysis or
code review. The extensive use of the two test beds demanded
rapid correction of test bed errors. The robustness of the flight

software as well as the test beds increased due to the verification
program.

5. BEST PRACTICES

The following guiding principles used in the AACS fault protection
verification produced over 450 flight software changes:
» Write test cases as realistic flight scenarios
» Span all the operational modes
e Insert failure during a transition or event on the
spacecraft
» Use non-standard hardware configurations
Change the initial conditions of each test
Test on hardware test bed as early as possible to
find fundamental timing problems
= Ensure fault protection testing is scheduled for a
reasonable percentage of the available hardware
test bed time. (
» Ensure rapid feedback from finding a bug to the fix
to a new delivery
» Review results with code designers to facilitate
efficient communications

6. SUMMARY
Testing complex fault protection design requires realistic modeling

of the system, faster than real-time processing, and a useable fault -

injection system. The more the testers know about the system, the
more bugs they will find. Due to the Cassini AACS fault protection
verification program, there is confidence that the fault protection
software works well and is robust.

ACKNOWLEDGMENT

This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under contract with the National
Aeronautics and Space Administration. The author wishes to
acknowledge additional people involved in the AACS fault
protection verification: Jae Kim, Danny Lam, Kathryn Hilbert, G.
Mark Brown, Allan Lee, Garth Watney, Mary Lam, Gurkirpal Singh,
and Robert Rasmussen.

References
(11 John K. Ousterhout, Tc! and the Tk Toolkit, Addison-Wesley
Publishing Company, Inc., 1994.

